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Abstract 
This paper focuses on the problem of how to find and effectively 
exploit speculative thread-level parallelism. Our studies show 
that speculating only on loops does not yield sufficient 
parallelism. We propose the use of speculative procedure 
execution as a means to increase the available parallelism. An 
additional technique, data value prediction, has the potential to 
greatly improve the performance of speculative execution. In 
particular, return value prediction improves the success of 
procedural speculation, and stride value prediction improves the 
success of loop speculation. 

1. Introduction 

Researchers have been exploring the use of speculative threads to 
harness more of the parallelism in general-purpose programs 
[1][6][8][12][15][17][19]. In these proposed architectures, 
threads are extracted from a sequential program and are run in 
parallel. If a speculative thread executes incorrecfly, a recovery 
mechanism is used to restore the machine state. While a 
superscalar processor can only extract parallelism from a group of 
adjacent instructions fitting in a single hardware instruction 
window, a thread-based machine can intelligently find parallelism 
among many larger, non-sequential regions of a program's 
execution. Speculative threads can also exploit more parallelism 
than is possible with conventional multiprocessors that lack a 
recovery mechanism. Speculative threads are thus not limited by 
the programmer's or the compiler's ability to find guaranteed 
parallel threads. Furthermore, speculative threads have the 
potential to outperform even perfect static parallelization by 
exploiting dynamic parallelism, unlike a multiprocessor which 
requires conservative synchronization to preserve correct 
program semantics. 

Several hardware designs have been proposed for this speculative 
thread-level parallelism (STP) model [1][6][8][12][15][17][19], 
but so far the speedup achieved on large general-purpose integer 
code has been limited. However, it is important to note that these 
experiments evaluated not only the proposed hardware, but also 
the choices made by the researcher or the compiler as to where to 
apply speculative execution. The decision on where to speculate 
can make a large difference in the resulting performance. If the 
performance is poor, we gain little insight on why it does not 
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work, or whether it is the parallelization scheme or machine 
model (or both) that should be improved. As a consequence, poor 
results may not reflect any inherent limitations of the STP model, 
but rather the way it was applied. 

The goal of this paper is to identify potential sources of 
speculative parallelism in programs. To search through a large 
space of parallelization schemes effectively, we work with simple 
machine models and a relatively simple trace-driven simulation 
tool. 

We define an optimal STP machine that incurs no overhead in 
executing the parallel threads and can delay the computation of a 
thread perfecdy to avoid the need to rollback any of the 
computation. To keep the experiments simple and relatively fast, 
the STP machine is assumed to be a simple machine in all other 
aspects. Many different optimizations have previously been 
proposed to minimize rollbacks, such as adding synchronization 
operations to the code statically[2] or inserting them dynamically 
as rollbacks are detected, for example[13]. We can use the 
optimal machine to derive an upper bound on the performance 
achievable using any possible synchronization optimizations. 
The optimal machine serves as an effective tool for filtering out 
inadequate parallelization techniques, since techniques that do 
not work well on this machine will not work well on any real 
machine of a similar design. We vary the resources available on 
our optimal STP machine in the experiment, supporting 4, 8, or 
an infinite number of concurrent threads. 

We also define a base STP machine that is siiflilar to the optimal 
version but makes no attempt to eliminate rollbacks through 
synchronization. The machine simply executes the instructions of 
each thread in sequence; if the data used is found to be stale, and 
the value was not correctly predicted, the machine restarts the 
thread. The performance of a particular synchronization scheme 
should thus fall between the bounds established by the optimal 
and base machines. 

To explore the potential of various parallelization schemes in an 
efficient manner, we have created a trace-driven simulation tool 
that can simultaneously evaluate multiple parallelization choices. 
We also use this tool to collect useful statistical data, providing 
important insights and explanations of the parallel behavior of the 
program. 

Our experiments have led to the following contributions: 

• We found that it is inadequate to exploit only loop-level 
parallelism, the form of parallelism that is used almost 
exclusively in many prior studies. Our tool simultaneously 
evaluates all possible choices of which level in a loop nest to 
speculate on.  Even with optimal loop-level  choices for 
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speculation and optimal data dependence synchronization, 
the speedup obtained is low. This is due to a combination of 
the limited parallelism of loops in non-numeric code and the 
time spent in sequentially executed code found outside of the 
parallelized loops. 

■ We found that procedures provide a useful source of 
speculative parallelism. In procedural speculation, another 
thread speculatively executes the code following the return of 
the procedure at the same time the procedure body is itself 
being executed. Procedure boundaries often separate fairly 
independent computations, and there are many of them in 
most programs. Thus, procedure calls provide important 
opportunities for parallelism and can complement loops as a 
source of thread-level parallelism. 

• We also evaluated the potential of using prediction to 
improve speculative parallelism. In particular, predicting the 
value returned by a procedure (return value prediction) can 
greatly reduce the data dependences between the procedure 
execution and the following computation. Value prediction 
can also eliminate important data dependence constraints 
across iterations of speculatively executed loops. 

This work suggests that there is significant potential in an STP 
machine that supports speculation on both loops and procedures. 
Defining a complete machine design based on this computation 
model is beyond the scope of this paper. This work serves an 
important function in showing the limits of certain parallelization 
schemes, such as parallelizing only loops, and pointing out ideas 
worthy of further attention such as procedural speculation and 
value prediction. 

The rest of this paper is organized as follows. In Section 2 we 
describe the STP machine model in more detail, followed by the 
simulation methodology in Section 3. In Section 4 we present 
results on using the optimal STP model to exploit loop-level 
parallelism. We investigate the use of procedural speculation in 
Section 5. Section 6 contains the results of combining loop-level 
and procedure-level speculation. In Section 7 we present the 
performance results of both the optimal and base machines with 
finite resources. Related work is discussed in Section 8 and we 
conclude in Section 9. 

2. The STP Machine Model 

In the STP machine model, the program explicitly specifics when 
the threads are to be created. To preserve correct sequential 
execution semantics, the side effects of each speculative thread 
are saved in a separate speculative state. Each thread can observe 
all the writes of threads that occur earlier in the sequential 
execution sequence, use the latest values at each point, and detect 
dependence violations. There are two forms of dependence 
violation; 

• (true) data dependence. A thread detects a dependence 
violation if it discovers that an earlier thread has generated a 
value that it needs after it has already speculatively computed 
with an outdated value. This is the only form of data 
dependence violation. Anti-dependences (or storage 
dependences) do not cause a violation. That is, write 
operations by a later thread do not affect the values read by 

an earlier thread, and therefore these operations need not be 
ordered. Similarly, actions of earlier threads have no effect on 
a later thread that first writes then reads the same location. 

•  control dependence. A thread detects a control dependence 
violation if the control flow of an earlier thread causes the 
subsequent thread not to be executed at all. For example, an 
early exit taken by an iteration of a loop would render the 
speculative execution of all subsequent iterations useless. 

If a violation occurs, the processor throws away the speculative 
state and, in the case of a data dependence violation, restarts the 
thread; if none occurs, it commits the speculative state when all 
threads   coming   earlier   in   the   sequential   execution   have 
committed. There have been several proposals that implement 
this model[3][l7][19], which are discussed in Section 8. 

Value prediction[ll], a concept receiving much recent attention, 
is particularly relevant to STP as it enables a program to run 
faster than the dataflow limit determined by data dependences. 
We examine two simple schemes of value prediction. The last- 
value prediction (LVP) scheme predicts that the loaded value will 
be the same as the value obtained from the last execution of that 
load instruction. The stride-value prediction (SVP) scheme 
predicts that the loaded value will be the same as the last loaded 
value plus the difference between the last two loaded values. By 
using value prediction, a speculative thread need not be rolled 
back upon detecting a true data dependence violation if the 
predicted value matches the newly produced value. To find the 
upper bound of the impact of value prediction on STP, we assume 
that the machine automatically uses value prediction whenever it 
attempts to read a value that has not yet been produced. As this is 
a limit study, we also assume that the machine has a buffer large 
enough to hold all predicted values needed by any thread. 

3. Simulation 

We use a trace-driven simulation tool to evaluate the performance 
of different speculative execution schemes under different 
machine models. For the sake of simplicity, we assume that each 
processor takes one cycle to execute each instruction. Also, to 
focus on the potential of the different parallelization schemes, we 
assume that the system has a perfect memory hierarchy. All 
memory accesses can be performed in a single clock and stored 
data is immediately available to all processing elements in the 
next cycle. There is no overhead in the creation of threads and no 
additional cycles are needed to restart a thread once a violation is 
detected. 

The execution of a single instruction per cycle in our simulations 
raises the issue of how thread-level parallelism interacts with 
instruction-level parallelism (ILP). Note that the STP model is 
designed to execute relatively coarse-grain threads, so we expect 
that the threads in the STP model can still benefit significantly 
from ILP. The average thread size across our benchmarks was 56 
instructions, roughly corresponding to a 224-instruction window 
on a 4-way machine and a 448-instruction window on an 8-way 
machine. Still, further studies are necessary to determine the 
effect of combining STP and ILP. 

To explore the STP design space, we vary our simulations based 



upon the types of regions speculation is applied to (single-level 
loops, multi-level loops, procedures, loops and procedures), 
whether or not dependence synchronization is employed, the 
maximum number of concurrent threads allowed to execute, and 
the value prediction policy for memory loads and register reads. 
The parameters to our simulator are summarized in Table 1 and 
Table 2. 

Table 1: STP Parallelization Schemes 

Region(s) Description 
loops a single loop in each nest is chosen for speculation 

multi-level 
loops 

all loops in each nest are chosen for speculation 

procedures procedure bodies execute in parallel with the code 
following them 

loops and pro- 
cedures 

speculation on a single loop in each nest as well as 
on procedures 

Table 2: STP Machine Model Parameters 

Parameter Description 
Synchronization Policy                                                                        | 
optimal all operations delayed optimally to avoid rollback 

base no operations are ever delayed, threads are rolled 
back as soon as a violation is detected 

Resources                                                                                           \ 
Infinite no limit on the number of concurrent threads 

8-way resources to execute 8 concurrent threads 

4-way resources to execute 4 concurrent threads 

Return Value Prediction                                                                      \ 

none no return value prediction 

LRVP last value prediction of return values 
whenever procedural speculation is used 

LVP last value prediction of return values 
whenever procedural speculation is used 

SVP stride value prediction of return values 
whenever procedural speculation is used 

Value Prediction for Memory Loads and Register Reads                      | 

none no value prediction 

LRVP no value prediction (except for return values as 
above) 

LVP last value prediction 

SVP stride value prediction 

We use the ATOM tool [18] to augment the optimized program 
binaries and generate a user-level trace that includes events of 
interest: loads and stores, procedure entries and exits, and loop 
entries, exits, and iteration advances. (System calls are not 
captured in the trace.) The simulation clock normally advances 
one cycle per instruction. Procedure and loop entries signal the 
potential forking of a speculative thread, depending on the 
parallelization scheme used. When a speculative thread fork is 
encountered, the simulation time is stored and the first thread 
executes. When the later thread(s) from the fork begin to execute, 
the simulation time is set back to the time of the fork. When a 
store or register write occurs, the current simulation time is 
recorded for that memory/register location. Execution continues 
as normal, except threads are delayed or squashed if they try to 
read a value that was written at a time greater than the current 
simulation time. Delays are avoided in the models employing 

value prediction whenever the values are correctly predicted. 
Value prediction is implemented by keeping an array of the last 
two loaded values for each load and register use in the program, 
and by keeping another array of the last two returned values for 
each procedure in the program. The value prediction employed is 
rather idealistic, in that we presume perfect "confidence 
estimation"—when the prediction is incorrect, the machine 
simply behaves as if prediction were not employed at all, so 
misprediction never causes any performance penalty. 
Additionally, because the simulation is based on the sequential 
program trace, there is no notion of the value predictor being 
updated "out of order" as would undoubtedly happen in a real 
speculative machine. A prediction is always based on the last one 
or two instances of that instruction in the sequential trace. Thus 
the performance results with prediction should be considered as 
an upper bound on the benefit that prediction could provide. 

In simulations of finite-processor models, a resource table is used 
to track usage of the individual processors. A thread must obtain 
execution cycles from a resource table before it is allowed to 
execute. Threads closer to the sequential execution are given 
priority and may preempt lower priority threads in progress if 
resources are exhausted. Preempted threads are delayed until the 
next available cycle and are re-executed from the start. 

When the actual number of loop iterations is not known a priori, 
a real STP machine would end up wasting some resources 
executing beyond the end of the loop. To account for the wasted 
cycles on mispredicted iterations, which do not show up in our 
sequential trace, our simulator treats the end of a loop as a barrier 
to parallelization in simulations of finite machines. That is, the 
machine is not allowed to speculatively execute computation that 
logically follows the loop in the original sequential execution. 
No such barrier exists in the procedural case because only one 

new thread is created at each procedure call. 

One final consideration is that the code generated by the compiler 
for a uniprocessor machine includes many "artificial" 
dependences. For example, the multiple threads in an STP 
machine operate on multiple stack frames at the same time, so 
they need not obey the dependences due to global and stack 
pointer updates in the sequential program. Similarly, since the 
threads have separate register files, they are not constrained by 
the dependences introduced by callee-saved register operations. 
Our simulator ignores dependences originating from a register 
restore operation (e.g. the dashed arrow in Figure 1), and instead 
observes the true dataflow dependence that the save/restore code 
is preserving (e.g. the solid arrow in Figure 1). 

3.1. Benchmarks 

We evaluate the performance of our various speculative thread 
models using the 8 benchmarks from the SPECint95 benchmark 
suite. Table 3 lists the programs, input sets, and execution 
characteristics. Throughout the paper, speedups are calculated 
relative to a single cycle per instruction sequential execution of 
the program. 

All the programs were compiled using the Compaq Alpha cc 
compiler with optimizations using the -02 flag. To perform the 
simulation,   we   use   ATOM  to   annotate  the  binaries   with 



Thread 1 Thread 2 

rO  <- 

foo(); /* body of foo */ 
/* callee register save */ 

stack <- rO 

/* callee register restore */ 
.rO  <-  stack 
return; 

...   <- rO' 

Figure 1. Dependences Induced by Callee-Saved 
Register Operations 

Table 3: Benchmarks Executed 

Program 
Lines 

of Code Input Set 
Dynamic 

Instr Description 
compress IK train 47M File 

compression 
gcc 192K train 286M Tiic GNU 

compiler 

go 29K train 54M Game of go 
'jpeg 28K train 183M Image 

compression 
U 7K train 136M Lisp 

interpreter 
mSSksim 18K test I34M Processor 

simulator 
perl 23K train 

(primes.pl) 
5M Perl language 

interpreter 
vortex 52K train 963M Database 

information such as the entry and exit points of loops as well as 
locations for set jmp and long jmp calls. The annotation tool 
analyzes the binary code directly, extracts control flow graphs 
from the code and calculates the singly entry and potentially 
multiple exits of the loops using standard compiler algorithms. 
Recognizing all induction variables in the binary, however, would 
require an interprocedural analysis that we have not implemented, 
so induction variables are not recognized. Note that machines 
employing stride value prediction will effectively recognize the 
induction variables and ignore most of their dependences. For 
machines with last value or no value prediction, the loop iteration 
counting code generated by a typical uniprocessor compiler will 
result in at least one data dependence across iterations that needs 
to be synchronized, even if the loop is otherwise parallel. 

4. Speculative Loop Parallelism 
Lx)op iterations are the traditional target of parallelization and an 
obvious candidate for thread-level speculation. Each iteration of a 
loop can be turned into a speculative thread that runs in parallel 
with the other iterations of that loop. The only form of control 
dependences shared between iterations are loop termination 
conditions, and the outcomes are highly skewed in favor of 
continuation. The remainder of the control flow in each iteration 

is independent; thus failure to predict a branch within an iteration 
does not affect other threads. The degree of parallelism available 
in a loop is governed by the presence of data dependences that 
cross loop iteration boundaries. If the iterations operate on 
disjoint sets of data, the degree of parallelism can be equal to the 
number of iterations of the loop. In the following, we first focus 
on the common model of applying speculation to one loop at a 
time. We then look at the performance and hardware implications 
of allowing multiple loops to speculatively execute in parallel. 

4.1. Single-Level Loop Speculation 

When we restrict speculation to a single loop in a nest, the critical 
decision is which loop in the nest to speculate on. There are two 
factors that need to be considered when selecting the best loop. 

• Degree of Parallelism: there must be sufficient data 
independence between the iterations to achieve parallelism. 
If the iterations are totally independent (a DoAll loop), then 
the potential degree of parallelism is equal to that of the 
number of iterations. If there are dependences across 
iterations (a DoAcross loop), the degree of parallelism is 
dependent upon the ratio of the length of the recurrence cycle 
to the length of the iteration. 

• Parallelism Coverage: If we parallelize an inner loop, then 
all the code outside will run sequentially. Thus, it may be 
desirable to choose an outer DoAcross loop with less 
parallelism over an inner DoAll loop if speculation can only 
be applied to one loop at a time. We refer to the percentage of 
code executed under speculative execution as the parallelism 
coverage. By Amdahl's Law, low parallelism coverage 
necessarily results in poor performance. 

To select the best loop, we developed a separate trace-driven tool 
called MemDeps[15]. This tool presumes that only one loop in 
any given dynamic loop nest can be speculatively parallelized. 
(Note that loops in a dynamic nest need not be defined in the 
same procedure.) MemDeps evaluates the speedup for each of the 
possible choices, and chooses the best performing loop in each 
dynamic nest to compute the overall speedup. At the end of the 
MemDeps simulation, we calculate the overall frequency with 
which each loop was dynamically chosen as the best loop. These 
overall frequencies are then used to make static choices for loops 
in our simulations of the various STP machine models. 

We evaluate the performance of the one-level loop speculation 
model on several variants of the optimal STP machine using the 
SPECint95 benchmark suite. Figure 2 presents the experimental 
results of this study Machines are denoted by their 
synchronization policy and memory load prediction scheme, if 
any, as described in Table 2. 

The largest speedup of 5.2 is achieved by ijpeg, an image 
compression program, with stride prediction enabled (Optimal- 
SVP). The significant performance improvement seen with stride 
prediction is due to the elimination of induction variable 
dependences across iterations. (Last-value prediction has no 
effect on these variables.) Had the code been compiled for an STP 
machine explicitly, the compiler would recognize many of these 
induction variables and would eliminate their dependences from 
the  program.   If an   STP  machine   used  induction   variable 



recognition but not general value prediction, its performance 
would be bounded by the Optimal and Optimal-SVP results. 

It is not surprising that i jpeg performs well as its algorithm is 
very parallel. M88ksim and vortex are the only other 
programs with speedups over 2, with the rest of the benchmarks 
performing only between 1 and 1.6 times better than sequential 
execution. Note that li and perl are relatively unaffected by 
value prediction. 

Despite the optimal STP machine's ability to speculate loops 
perfectly, the overall harmonic mean of speedup achieved across 
the benchmark suite is only 1.6. With the exception of ijpeg, 
the results are rather disappointing especially when considering 
that the optimal STP machine uses an unbounded number of 
processors, delays every operation optimally, and has zero- 
communication cost. Moreover, the loop choices are made by 
analyzing the execution of the program with the same input set. 
Unless large changes are made to the code, speculating at only 
one level in each loop nesting will not yield significant speedup 
on a realistic STP machine. Different code generation or 
instruction scheduling could provide a potentially higher limit, 
however. 

To gain more insight into the performance results, we 
instrumented the code and the simulator to collect various 
characteristics of the individually speculatively parallelized 
loops[15]. We determine the computation time of the loops 
speculated on, whether the loops are innermost or outer loops, 
and whether the loops are DoAcross or DoAll loops. We 
summarize the findings of those experiments here. 

• Poor overall performance due to poor parallelism coverage. 
Many of the programs have loops that show fairly impressive 
speedups when speculatively executed. However, the lack of 
parallel coverage, shown in Table 4, results in overall 
performance that is much lower For example, m88ksim 
with stride prediction achieves an impressive 34.4-times 
speedup on 71% of the program, but the serialization in the 
other 29%  of the computation drags down the overall 
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performance. To illustrate the importance of coverage, we 
also present the Amdahl's Law limit on the overall speedups 
in Table 4, which assumes infinite speedup of the covered 
portions of the programs and sequential execution elsewhere. 
Even if the all the parallehzed code was executed in a single 
cycle, most programs would still show relatively modest 
overall speedups. 

Table 4: Coverage and Maximum Theoretical 
Speedup for Single-Level Loops 

Program 
% 

Parallelized 
Amdahl's Law 
Max Speedup 

compress 27% 1.4 

gcc 77% 4.4 

go 67% 3.0 

ijpeg 99% 100.0 

li 45% 1.8 

mSSksim 71% 3.5 

perl 85% 6.7 

vortex 93% 14.3 

Figure 2. Optimal STP Speculation on 
Single-Level Loops 

• Trade-off between speedup and coverage. In many cases, 
choosing the best loops for overall program speedup 
presented a distinct trade-off. Inner loops tended to have 
higher speedups but lower parallel coverage, while outer 
loops covered more of the program but had lower speedups. 

• Lack ofDoAll loops. Only the two best performing programs 
(ijpeg and mSSksim) spend more than 10% of their 
execution time in DoAll loops. Most of the integer programs 
have only DoAcross loops, which tend to have a lower 
degree of parallelism. 

• Size of the speculative state is limited. In all but three of our 
benchmarks (the three being li, vortex, and gcc), the 
maximum amount of speculative state needed per thread was 
relatively small, approximately three kilobytes. Indeed, 
Steffan and Mowry found that threads needed less than 5KB 
of buffering on average (usually significantly less), and that a 
two-way set associative data cache with a small fully- 
associative victim cache was sufficient to retain almost all 
speculatively-accessed lines[ 19]. 

The analysis of the above suggests that it is important to find 
other sources of speculative parallelism. Doing so will not only 
increase parallelism coverage, but will also enable the machine to 
exploit parallel inner loops more effectively. 

4.2. Multi-Level Loop Speculation 

Speculatively executing multiple loops in a nest seems to be an 
obvious approach to improving single-level loop performance, 
but there are many difficulties in practice. First, the relatively 
small number of processors we are targeting (4 or 8 in our later 
experiments) make it difficult to assign them to multiple loops at 
a time. In addition, because the number of iterations in a loop is 
not always known a priori, some loops would occupy the entire 
machine with "potential" iterations. Finally, our thread 
prioritization favors the most-sequential threads, so inner loop 
threads would tend to force outer loop threads out of the machine. 



Despite these difficulties, we wish to find a bound for this 
approach. In this experiment, we consider the extreme case where 
the optimal STP machine uses an unbounded number of 
processors to simultaneously execute all the iterations of each 
loop in a nest that it encounters. The results are shown in 
Figure 3. 

Even with all its idealistic characteristics and its use of a very 
aggressive speculation model, the optimal STP machine's 
performance is still relatively poor. The harmonic mean improves 
only modestly from 1.6 to 2.6 (with stride prediction) when 
speculatively executing all loops simultaneously, while the 
machine design becomes much more difficult. 

4.3. Summary of Speculative Loop Level Parallelism 

Our results show that speculatively executing one loop at a time 
will not yield significant speedup under the STP model. Moreover 
the performance is highly sensitive to the way the code is written. 
Most integer codes have DoAcross loops which have limited 
parallelism. The ability to speculate on just one loop in each nest 
limits the parallel coverage which produces a lower overall 
speedup. Parallelizing multiple loops simultaneously increases 
the coverage and the overall performance, but would be very 
difficult to effectively support in a real machine. Overall, the 
performance on a very idealistic system is still modest. This result 
strongly suggests that loop-level speculation needs to be 
complemented with other sources of parallelism. 

5. Procedure Level Speculation 
Procedures are the programmer's abstraction tool for creating 
loosely-coupled units of computation. This suggests that it may 
be possible to overlap the execution of a procedure with the code 
normally executed upon the return of the procedure. A 
characteristic that makes speculative procedure execution 
particularly attractive is the lack of control dependence between 
the sequential and speculative threads. Procedures are expected to 
return under normal execution, and thus it is seldom necessary to 
discard the speculative work because of control flow. The only 
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Figure 3. Optimal STP Speculation on 
Multi-Level Loops 

exceptions are when the procedure raises an exception or uses 
unconventional control flow operations such as long jmp. These 
unusual circumstances can easily be handled by simply aborting 
the speculative threads and discarding their speculative states. 

Unlike loops, procedures have not been a very popular target of 
parallelization. They have generally been used in more functional 
programming environments where there are fewer memory side 
effects in procedures and recursion is more common[5][7]. In 
typical imperative programming' environments, procedures tend 
to share more data dependences with their callees. Also, as 
recursion is less predominant in imperative programs, the 
available parallelism is not scalable. These limitations, however, 
are much less important to the STP model. The speculative 
execution hardware can handle the memory dependences that 
might exist across procedures. Furthermore, a real STP machine 
is likely to have hardware support for only a small number of 
concurrent threads. The prevalence of procedure calls throughout 
programs provides a potentially effective source of parallelism 
for complementing loop-level parallelism. 

To speculate at the procedure level in the STP model, we 
concurrently execute the called procedure with the code 
following the return of the procedure. Notice that it is the latter 
that executes speculatively. We propose to use a new thread to 
execute the called procedure and have the original thread execute 
the rest of the caller code speculatively. A data dependence 
violation occurs if the code following the return reads a location 
before the callee thread writes to that location. The same 
mechanism that is used for loop-level parallelism can be used to 
ensure that the data dependences are satisfied. By customizing the 
procedure calling convention to support speculation, the overhead 
of creating a new thread could be minimized. Furthermore, if the 
threads have their own private registers, there would be no need 
to save and restore registers at procedure boundaries. (Our study 
does not take advantage of this optimization opportunity.) 

While loop level speculation can occupy an arbitrarily large 
number of processors by assigning a new iteration to each 
processor, each instance of procedural speculation creates work 
for only one additional thread. To create more opportunities for 
parallelism, this concept of procedural level speculation can be 
applied recursively. In the recursive case, note that the order of 
thread creation is not the same as the sequential order that the 
threads will retire in. The sequential ordering of the recursively 
created threads can be easily determined as follows. If thread A 
creates a speculative thread B at a call site, then B comes after A, 
and inherits from A all of its sequential ordering relationship with 
all other threads. 

Because the return value is often used immediately upon the 
return of a procedure, speculatively executing the code following 
the procedure body could result in a large number of rollbacks. To 
avoid these rollbacks, we propose predicting the value that will be 
returned. Return value prediction is implemented by keeping a 
cache of past values returned by each procedure, if they exist. The 
caller thread continues to execute the code following the 
procedure call using the predicted return value. When the callee 
thread returns, the actual return value is compared to the 
predicted value. If the values are different, the machine would 



generate a data violation signal, discard the speculative state, and 
restart the thread. 

5.1. Predictability of Return Values 

To verify that speculation with return value prediction has 
potential, we first look at the predictability of those values. We 
experimented with two simple schemes of prediction: last-value 
prediction and stride-value prediction. The results are shown in 
Figure 4. We classify procedure returns into three categories: (1) 
those that have either no return values or whose return values are 
not used, (2) those whose return values are used and are correctly 
predicted, (3) those whose return values are used and are 
mispredicted. For each program, we show two sets of data, one 
that uses last-value prediction labelled "L" and one that uses 
stride-value prediction labelled "S". 

First, we observe that both last-value and stride-value prediction 
give similar results, with those of last-value prediction being 
slightly better for half of the programs. Misprediction of return 
values occurs less than 50% of the time for all programs, with 
vortex and mSSksim having almost no mispredictions. The 
benchmarks where return value prediction most often fails 
typically return pointers or other memory/storage related values. 
For example, compress makes many calls to a hash function 
whose results are highly unpredictable. Those that are extremely 
predictable tend to return quantities like status/error conditions, 
as in vortex for example. Finally, note that just because a return 
value is correctly predicted does not imply that much of the callee 
and caller computation will be overlapped; if the procedure 
modifies global variables or reference parameters after the caller 
has speculatively read such data, and the values read are not 
predictable, then the caller thread will be rolled back. 

5.2. Evaluation of Procedural Speculation 

Our next experiment evaluates the speedups of the procedural 
speculation model on optimal STP machines with different value 
prediction policies. 

The results are shown in Figure 5. First, by comparing the 
performance of Optimal and Optimal-LRVP we observe that 
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Figure 4. Predictability of Procedure Return Values 

Figure 5. Optimal STP Speculation on Procedures 

result value prediction has a significant positive effect on the 
performance of procedural speculation. As expected, programs 
with highest numbers of used and correctly predicted return 
values (vortex, mSSksim, as well as go and gcc to a lesser 
extent) benefit significantly. Conversely, compress, whose 
return values are not predictable, shows almost no improvement, 
ijpeg shows essentially no improvement with return value 
prediction because its most frequent routines (discrete cosine 
transforms) do not return any values. 

Value prediction on regular data accesses is useful for almost all 
the programs, and can sometimes make a dramatic difference to 
the performance as in the case of vortex and to a lesser extent 
mSSksim and gcc. To gain some insight on this issue, we 
analyzed the code for mSSksim, a program that simulates a 
microprocessor. We found that the load instruction that benefits 
most from stride value prediction is a load of the simulation's 
program counter (at the beginning of the datapath () 
procedure). Since the program counter typically increments by 4 
each time datapath () is called, stride value prediction is 
perfect for eliminating this dependence. Just as a processor 
benefits greatly from prefetching consecutive instructions, this 
speculative execution enables mSSksim to run much faster. 

We also investigated the behavior of vortex, which has 
abundant parallelism when prediction is enabled. The dominant 
procedure in vortex, Chunk_ChkGetChunk, accounts for 
about 18% of the total execution time. The procedure verifies that 
a memory chunk access was valid and sets a call-by-reference 
parameter, status, to indicate the fype of error if any. The 
return value is a boolean version of status. Given that the error 
conditions rarely occur, this is an excellent procedure for 
speculation. Note that prediction of both the return value and the 
call-by-reference out parameter is needed to make the threads 
completely parallel. 

Overall, the experiments suggest that procedures are a good 
source of speculative parallelism in many programs. With the use 
of return value prediction, speculating at procedural boundaries 
delivers a performance comparable to that of executing all loops 
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Figure 6. Optimal STP Speculation on Loops 

and Procedures 

speculatively on the various Optimal STP models. Value 
prediction of regular memory accesses improves the overall 
speedup for almost all programs and has a major impact on 
specific programs. 

6. Speculating at Both Procedural and Loop 
Boundaries 

We next investigate the effect of combining both procedure and 
loop-level speculation. The experimental results for the various 
optima! STP models are shown in Figure 6, and they are much 
more encouraging. Most of the programs improve significantly 
over speculation on loops or procedures only, showing benefits 
from both forms of speculation. All but compress and perl 
have at least a 4.5-times speedup under the Optimal-SVP model. 
This includes programs, such as gcc, which have been very 
difficult to parallelize previously. As noted before, value 
prediction can have a significant effect on specific programs. 

7. Experimenting with More Realistic Models 
Having shown that speculation at all loop and procedure 
boundaries exposes a reasonable amount of parallelism in an 
optimal STP machine, we now experiment with this software 
model on more realistic machine models. In the following 
sections, we first evaluate the speculative scheme on an optimal 
STP machine with a finite number of processors, and then on the 
base STP machines that may require rollbacks. 

7.1. A Finite Number of Processors 

An optimal STP machine with an unbounded number of 
processors favors the creation of as many threads as possible. In 
the degenerate case where every single instruction is a thread of 
its own, the results would be identical to those reported by 
previous oracle studies where each operation is issued as soon as 
its operands become available[22]. Speculating at all procedure 
and loop boundaries can easily generate more threads than a 
reasonable implementation could maintain. 

On a machine with support for only a finite number of threads, 
we must have a strategy to prioritize among the available threads. 
We adopt the simple strategy of prioritizing the threads according 
to their sequential execution order; a thread earlier in the 
sequential execution order has a higher likelihood of success and 
is thus given higher priority. In the presence of recursive 
procedural speculation, a newer thread may have a higher priority 
than an existing thread. When that happens, the machine frees up 
a processor for this thread by terminating the speculative 
execution of the thread with the lowest priority and discarding its 
speculative state. When the machine has some free resources, it 
will (re)start the execution of the thread with the highest priority. 
With this strategy, speculation on inner loops can occupy all 
available resources and thus prevent any speculative execution 
progress in the outer loops. In cases where the coverage or 
parallelism of the outer loop is more compelling, allowing inner 
loop speculation to "preempt" outer loop speculation would not 
be desirable. To address this, we suppress the speculation of all 
inner loops if they are estimated to have less parallelism than 
outer loops. We estimate the degree of parallelism of each 
individual loop by measuring the ratio of the average iteration 
length to the average length of the critical recurrence across 
iterations. This value is derived dynamically using the MemDeps 
simulator described in Section 4.1. 

Figure 7 and Figure 8 show the performance achieved with 4- 
way and 8-way STP machines. As expected, the speedups are 
lower than those found with infinite processors. M88ksim, 
vortex, and ijpeg perform quite well, delivering over a 5- 
times speedup on an 8-way machine and roughly 3-times speedup 
on a 4-way machine (both with stride prediction). Value 
prediction continues to benefit the same programs that saw 
improvement in the infinite processor case, but the gains are 
much more realistic and limited. The program compress suffers 
little degradation, but its performance with infinite processors 
was quite low to begin with. Overall, the harmonic mean of the 
speedups is 3.2 for 8 processors, and 2.3 for 4 processors. 
Achieving a performance of 3 and 4 for the larger programs, gcc 
and vortex, respectively, on an 8-way machine is particularly 
encouraging. 

7.2. Machines with Rollbacks 

The most unrealistic aspect of the optimal STP machine is that it 
automatically delays every operation by the optimal amount, 
guaranteeing that there are no dependence violations to cause 
rollbacks. In this section, we present an experiment where we 
remove this fundamental assumption. We evaluate 4-way and 8- 
way machines that insert no delays into their executions, and 
upon detection of a dependence violation, must squash the thread 
and roll back the computation. This causes a performance 
degradation when the machine speculates on threads that try to 
read data before it is written and are unable to predict the value 
correctly. 

In Figure 9 and Figure 10, we show the results for 4-way and 8- 
way Base STP machines, respectively. As expected, the 
performance of each Base machine is lower than that of the 
corresponding Optimal machine. Nonetheless, the results are 
surprisingly good given that the machines use no synchronization 
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Figure 8. Speculating both Loops and Procedures on 
an 8-way Optimal STP Machine 

operations at all to minimizing rollbacks. Harmonic mean 
speedups range from 1.7 to 2.1 for a 4-way base machine 
depending on the value prediction employed. 

It should be noted that the finite-processor Base STP machines 
are still rather idealistic. For example, the communication 
between threads incurs no overhead and thread creation and 
rollback is instantaneous. While more realistic models would 
result in lower performance, there are still many optimizations 
that could improve the performance as well. Implementing 
additional techniques to suppress poorly performing threads 
could provide a significant benefit. Other possibilities include 
introducing static or dynamic synchronizations[13] into the 
program in order to reduce the number of rollbacks. Further 
research on specific software and hardware mechanisms is 
necessary to effectively harness this form of parallelism. 
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Figure 9. Speculating both Loops and Procedures on 
a 4-way STP Machine with Rollback 

DBase-LRVP aBase-LVP iBase-SVP 

Figure 10. Speculating both Loops and Procedures 
on an 8-way STP Machine with Rollback 

8. Related Work 
The STP model is based on the Multiscalar paradigm which was 
the first speculative thread architecture[3][17]. The Multiscalar is 
a complete architecture for executing speculative threads with 
register and memory forwarding mechanisms and a mechanism 
for detecting memory data dependence violations called the 
address resolution buffer (ARB). The Multiscalar research group 
has evaluated the base processor and extensions to the processor 
that avoid unnecessary thread restarts using a number of integer 
applications, showing moderate speedups[13]. The Multiscalar 
group and other researchers have augmented the cache-coherency 
mechanisms of a single chip multiprocessor to support 
speculative threads [4] [13] [17]. The goal of these approaches is 
to achieve lower hardware overheads and more flexibility than the 
ARB approach originally proposed in the Multiscalar processor. 
To select tasks for the Multiscalar[21], a compiler pass examines 



the control-flow graph of the program and uses heuristics to 
partition the basic blocks into threads. Speculative tasks are 
supposed to immediately follow the spawning task, so there is no 
nested task creation, but prediction of successor tasks is more 
difficult. 

Steffan and Mowry evaluate the performance potential of a 
multiprocessor-based approach and show reasonably good 
performance on some integer applications[19]. Unfortunately this 
performance seems to be quite dependent upon extremely 
aggressive and idealistic dynamic instruction scheduling. 

The Trace processor is a concrete machine proposal that can 
exploit similar parallelism found in multiple flows of controI[16]. 
In the Trace processor the program is dynamically broken into a 
sequence of instructions, each of which can be executed 
speculatively by a separate thread of control. If an instruction 
violates a data dependence, only that instruction and the 
instructions dependent on it will be re-executed. The ability to 
selectively re-execute only those instructions that arc affected 
mimics the ability of an oracle that can execute every instruction 
optimally whenever its operands are ready. Unfortunately, this 
ability comes with a relatively high implementation cost, as the 
processor must keep track of enough information to recover from 
all combinations of mispredictions. This necessarily constrains 
the size of each thread—the proposed maximum thread length is 
16 instructions. This limitation prevents the system from 
exploiting parallelism with a larger granularity. In comparison, 
the STP machine model can realistically allow longer speculative 
threads than that of the Trace processor because there is only one 
speculative state per thread. It can exploit parallelism between 
instructions that are farther apart, and can follow more 
independent flows of control because threads are explicit. 
However, compared to the Trace processor, STP thread restarts 
are expensive so it is more important to minimize dependence 
violations. 

The Dynamic Multithreading (DMT) processor[l] combines 
features of the Simultaneous Multithreading machine[20] and the 
Trace processor while also supporting procedural and some loop 
speculation. It executes threads in a tightly-coupled SMT-like 
environment. Selective recovery is performed from a trace buffer 
like the trace processor, but the machine does not compact 
normally executed code into traces. The speculative thread size is 
limited by the need to keep all of the thread's dynamic 
instructions in the trace buffer; in their simulations, threads can 
be at most 500 instructions long. They chose loop and procedure 
continuations as their targets for speculative execution. Inner 
loops speculation is not supported in order to work with 
preexisting binaries. While our earlier work showed that 
speculating only on single-level (mostly inner) loops in integer 
codes is insufficient, inner loops are still a valuable contributor to 
performance in certain programs. The DMT machine also does 
not perform explicit return value prediction. The only prediction 
employed is for registers, and it is limited to predicting that the 
initial register values for a child thread are the same as the parent 
thread's register values at the time the child is spawned. The 
DMT processor does have a fast-forwarding mechanism for when 
register prediction fails, though there is no facility for memory 

load prediction or synchronization. We believe that even greater 
performance is possible if these speculative support features are 
strengthened. 

Hammond, Willey, and Olukotun present a sample machine 
design implementing many of the ideas suggested in this paper 
and elsewhere, but the results reported are not encouraging[6]. 
There are many factors which contribute to this, however. First, to 
simplify the implementation, thread management is done largely 
in software by handlers that take significant time to operate. For 
example, starting a loop, committing a loop iteration, and ending 
a loop all take on the order of 70 to 80 instructions, which is fairly 
close to the average thread size that we observed. Additionally, 
while return value prediction is implemented for procedures, 
neither value prediction nor synchronization is implemented to 
help cope with the other data dependences across speculative 
threads. Also, communication between threads occurs in the L2 
cache and costs 10 cycles. A subsequent paper by the group 
showed improved results when overheads were reduced and 
software was manually updated to introduce synchronization and 
better code scheduling[14]. The reduced overheads were 
achieved by abandoning procedural speculation, however Our 
study is intended to find the potential speculative thread-level 
parallelism in programs. Whether this parallelism can be 
efficiently exploited by a real machine is outside the scope of this 
paper The results from Hammond et. al. would suggest that 
efficient speculation support is necessary in order to achieve good 
performance. 

General motivation for using multiple flows of control to increase 
sequential application performance was presented by Lam and 
Wilson[9]. While the value prediction we employ could result in 
performance beyond the dataflow limit observed in Lam and 
Wilson's experiments, our multiple flows of control (loop 
iterations and procedures) are much more restricted in nature. 

9. Summary and Conclusions 
We summarize our search for speculative parallelism with 
Figure 11, which shows the harmonic means of the performance 
results of the different experiments we performed. We started our 
exploration by assuming an optimal STP machine with an infinite 
number of processors that completely avoids rollbacks. We 
experimented with different speculation schemes: speculating 
only one loop at a time, speculating at all loop levels, speculating 
at all procedural boundaries, and finally to speculating at both 
loop and procedure boundaries. We found that the last scheme 
delivers impressive performance on the optimal STP machine. 
Having found such a scheme, we then considered more realistic 
machine models. We first refined the parallelization scheme to 
reduce the number of threads created, and evaluated the 
performance of the programs on optimal STP machines with 8 
and 4 processors. Finally, we experimented with base machines 
that roll back speculative threads whenever dependence 
violations are detected. 

The methodology used in this paper enabled us to analyze 
programs effectively and discover promising sources of 
speculative parallelism. The relaxed machine model (Optimal) 
allowed us to quickly identify the fundamental limitations of loop 
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level speculation. We were able to develop a variety of analysis 
and simulation tools that isolated parallelism coverage as an 
important factor in the lack of performance. This result led us to 
locate alternative sources of speculative parallelism, namely 
procedural speculation. The gradual refinement of the machine 
models from the optimal STP machine, first with an infinite 
number of processors, then to a finite number of processors, and 
finally to machines with rollbacks increased our understanding of 

the different factors that affect performance. 

This paper shows that the combination of loop and procedural 
speculation (with result value prediction) is a promising 
parallelization scheme for speculative thread-level parallel 
machines. This scheme achieves at least a 4.5-times speedup for 
six of the eight SPECint95 programs on the optimal STP machine 

with an infinite number of processors, a 2.4 times speedup on an 
8-way machine that rolls back, and a 2.0 times speedup on a 4- 
way machine. While much research remains to be done to define 
suitable hardware mechanisms, to develop new software 
optimization techniques and to calculate evaluate the 
effectiveness of specific systems, our results suggest that STP is a 
potentially effective technique for speeding up general-purpose 

applications. 
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